
NPC-Behavior-in-Video-Games: Non-player
Character (NPC) Behavior in Video Games
Mason Stott

University of Tennessee
Knoxville, TN, USA
mstott3@vols.utk.edu

Jihun Kim
University of Tennessee
Knoxville, TN, USA
jkim172@vols.utk.edu

Arthur Jur
University of Tennessee
Knoxville, TN, USA
gjur1@vols.utk.edu

Julian Halloy
University of Tennessee
Knoxville, TN, USA
jhalloy@vols.utk.edu

Abstract—INTRODUCTION: Non-Player Characters (NPCs)
are integral parts of many video games. There are growing
expectations of players for intelligent and responsive NPCs, while
game developers are seeking effective methods to implement
complex NPC behavior without incurring high development costs.

OBJECTIVES: This paper aims to evaluate and compare
several approaches to implementing NPC behaviors in video
games. The goal is to provide game developers with practical
guidance on choosing the method that best suits their game.
METHODS: We implement and observe four AI techniques:
finite state machines (FSMs), behavior trees (BTs), goal-oriented
action planning (GOAPs), and utility AI. Each technique is
implemented in the Unity game engine and evaluated based on
ease of use, implementation effort, and the complexity of the
behaviors it can generate.

RESULTS: FSMs are preferred when the action space is
relatively small and transitions are easy to manage. BT provides a
better structure for managing complex or numerous transitions.
GOAP is best for complex but predictable behavior, especially
when the action space is large. Finally, utility AI is ideal when
the action space is large and requires unpredictable, emergent
behavior.

CONCLUSIONS: There is no single approach that fits all
situations. The best choice depends on the game’s requirements,
expected behavioral complexity, and development resources. This
study provides a comparative guide to help developers make
informed decisions when designing NPC behaviors.

I. INTRODUCTION

Non-player characters (NPCs) play a crucial role in creating
believable and dynamic experiences in video games. Their
behavior can have a tremendous impact on a player’s sense
of immersion and engagement, making the design of these
systems a critical component of the game development pro-
cess. The motivation for our project arises from the growing
complexity of modern games and the growing expectations
of players for intelligent and responsive NPCs that react be-
lievably to stimuli during gameplay. Achieving such nuanced
behavior, however, can be a nebulous undertaking, as there are
so many approaches to consider when designing these systems,
and therein lies the crux of our project.

We aim to supply a one-stop resource for determining the
most appropriate design approach for any given game project,
weighing the strengths and weaknesses of various well-known
standards for these systems. The approaches we investigate are
as follows:

• Finite state machines (FSMs)

• Behavior trees (BTs)
• Goal Oriented Action Planning (GOAP)
• Utility AI
We evaluate these methods in terms of their implementation

overhead, ease of use on the design side, and the potential
depth of behavior they offer relative to expended effort.

While this project is not entirely novel, as comparative
studies on such frameworks do exist, it is unique in terms of
the scope of the project and the uniformity of the evaluation
context. We seek to fill the gap in existing research by provid-
ing a comprehensive evaluation framework that considers the
complexity of implementation, ease of use for designers, and
depth of behavior produced across all of these approaches. In
the end, we hope to have a valuable resource for developers
in the design process of their next game project to make an
informed decision on their approach to NPC behavior design.

II. RELATED WORK

Since NPC behavior is important to game developers and
players, there has been quite a bit of research surrounding the
different strategies employed. Saia et al. explore the uses of
finite state machines (FSMs) for mimicking human strategies
in fighting games [4]. The authors point out that since the
state transitions in a FSM are fixed, the behavior becomes pre-
dictable and players can exploit it. The authors highlight that
traditional FSMs are static and rule-based. Another method
commonly used is the behavior tree. Robertson and Watson
explore the use of behavior trees in strategy games [3]. The
authors describe behavior trees as “hierarchical goal-oriented
structures.” They are also “static structures used to store and
execute plans.” The authors highlight that the behavior tree
they created was able to summarize a lot of information in a
concise manner.

Some more advanced strategies include Goal-Oriented Ac-
tion Planning (GOAP), introduced by Jeff Orkin [2]. Orkin
describes how GOAP was used in the development of the
game F.E.A.R. He highlights the fact that the planning system
reduced the burden on the developer to specify the agent’s
behavior. In GOAP, the planning system will search for the
actions required to achieved certain goals. Another strategy is
Utility AI, which is explored by Swiechowski [6] as well as a
novel extension of it (Fuzzy Utility AI). This strategy models
the utility of certain behaviors by evaluating utility curves.



Utility curves define the relation ship between a consideration
and the utility for a concept (e.g., attacking). A consideration
is a measurable subset of the game state. The model will
select the action that yields the largest utility. This allows for
more flexibility to adapt to specific game states that may not
always be accounted for in other methods, such as finite state
machines.

A. Research Gaps

While there has been research done on different algorithms,
there still is not an abundance of research comparing these
algorithms in similar game environments. Algorithms vary in
their ease of implementation, adaptability, and transparency,
which can even vary based on the scenario. It would be
helpful to know which algorithms are best in which scenarios.
Additionally, existing comparisons of different algorithms can
quickly become obsolete as the game development landscape
is ever-changing.

III. RESEARCH VALUE

The primary users of the results of this work would be video
game developers. Video game developers have a goal of creat-
ing interesting and fun-to-play games. These developers want
easier methods of development for more rapid prototyping.
Additionally, they want NPCs that behave in a controllable but
unique way to provide depth and interactivity to the game.

There is already research on NPC control in game devel-
opment. However, we hope to provide a novel comparison
between several modern approaches to help game developers
evaluate which option is best for them.

IV. RESEARCH QUESTIONS

Motivated by these considerations, we formulate the follow-
ing research question:

• What are the benefits and drawbacks of various video
game non-player character design patterns?

• Do we see more compelling behavior as a result of more
complex approaches?

• How can one decipher which approach would be best
applied to their unique project?

V. METHODOLOGY

Our approach for this project can be split into 3 distinct
phases.

A. Phase 1: Base Gameplay Framework

In order to consistently evaluate these frameworks, we need
underlying gameplay logic for these NPCs to interact in. For
this, we began the project by implementing a simple, small-
scope game in the Unity game engine, which we use as our
testbed for these behavior approaches. Within this sandbox,
we set up numerous gameplay scenarios focusing on different
aspects of the NPCs’ decision-making processes and compare
their behaviors.

Fig. 1. Screen Capture of Base Game Implementation

Our base implementation is a simple isometric shooter game
in which the player can walk around and fire a weapon. The
player character aims towards the location of the mouse. The
user can click to shoot and use W, A, S, and D keys to
move. The actions available to the enemies were defined in the
EnemyBehavior class. In figure 1, we can see the yellow
player character along with the three red enemy characters.
The characters also have a health bar above them. For a bit
more complexity, there are some obstacles in the scene that the
player and enemies cannot shoot through. However, grenades
can be thrown over these obstacles. We define the following
possible actions for the NPCs in our study:

• Shoot at the player.
• Throw a grenade towards the player.
• Move towards the player.
• Heal to restore health.
• Stop moving.

Fig. 2. Excerpt of EnemyBehavior class methods

B. Phase 2: Behavior Implementation

Once the base-level gameplay logic was complete, we
moved on to implementing the different behavior frameworks.
We worked on each of these implementations on a separate git
branch. Each of these frameworks is completely removed from
one another, and is implemented in such a way that they have
the same objectives in the scope of gameplay so that we can



effectively evaluate their performances free of any situational
bias.

C. Phase 3: Comparison and Assessment
Next, we test characters controlled by each decision frame-

work in the same gameplay scenarios and record our obser-
vations about similarities and differences between them. We
examine which ones are doing better/worse and which are
displaying more nuanced behavior.

VI. RESULTS

A. Finite State Machine
A state machine is a model used in programming and system

design to represent the behavior of a system as it transitions
between different conditions or ”states.” Each state defines a
specific situation or mode the system can be in, and transitions
define how and when the system changes from one state to
another based on inputs or events. In simple terms, a state
machine works like a flowchart: the system starts in one
state, and depending on what happens (like a change in a
variable’s value), it moves to another state. This makes state
machines very useful for controlling logic in systems where
different actions need to happen based on changing conditions.
State machines can even be stacked upon each other so that
there are multiple states that can occur at one time, but in
that scenario, it becomes closer to something else called a
pushdown automata, which is a more complex algorithm and
was not one of the algorithms we had chosen to explore in
this project.

The benefits of the state machine algorithm are that it is easy
to set up if the user wants simple and well-defined behavior
with explicit control over the action order that occurs. Fewer
states are easier to keep track of and less likely to result in
coding or state transition errors, since, as the number of states
increases for more complex behaviors, the number of states
and their transitions can become harder to keep track of. This
means that state machines are best for simple behaviors rather
than complex ones.

Fig. 3. Finite State Machine

B. Behavior Tree

Behavior Tree consists of four nodes: selector, sequence,
action, and condition nodes. Selector nodes evaluate their child
nodes in order and execute the one whose condition is met.
Sequence nodes execute all their child nodes sequentially,
making them suitable for tasks requiring multiple steps, such
as checking whether the player is within range, verifying
if an ability cooldown has elapsed, and executing an attack
(e.g., shooting or throwing a grenade). Action nodes represent
the enemy’s executable behaviors, such as healing, moving,
shooting, or throwing grenades. Condition nodes evaluate
specific criteria, such as determining whether the player is
within attack range. Using the nodes in the behavior tree, the
enemy decides whether to attack, move, or throw grenades
based on the player’s position, their health, weapon cooldowns,
and other conditions.

Behavior trees provide a modular and hierarchical frame-
work in which each node represents a self-contained task or
decision. This structure allows for flexible and scalable AI
design, making it easy to add or modify behaviors without
modifying a lot of code. Therefore, the implementation of this
method was fairly simple. However, the transition between be-
haviors can feel a bit too rigid if not carefully designed. In our
observations, this results in AI that feels unnatural/predictable.

Fig. 4. Behavior Tree: the red nodes are action nodes, the green node is a
condition node, and the orange nodes are composite nodes

C. Goal-Oriented Action Planning

Goal-Oriented Action Planning (GOAP) is a strategy in
which the agent has some beliefs, actions, and goals. This
can be seen in figure 5. The beliefs are beliefs that the agent
holds about the environment. These could be taken from some
sensors of the agent. In our implementation, we include an
attack sensor and a chase sensor. These sensors are sphere
colliders that check when the player is within a certain radius
of the enemy. Other beliefs can be information about the state
of the agent, such as their health.



Actions are the actions available for the agent to take.
These actions have preconditions and effects. Preconditions
are the conditions that must be met in order to take the action.
A precondition could be something like the chase sensor
detecting the player in order to be able to chase the player.
The effects of an action are simply the expected effects after
taking the action.

Goals are simply desired effects for the agent to achieve.
These goals have priorities that will determine how the planner
chooses the goal. In our implementation, we have the goal
“SeekAndDestroy” which has the desired effect of attacking
the player.

These three components are fed to a planner to form a plan
for the agent. A plan is a series of actions the agent should
take to achieve a goal. The planner will look at the desired
effect of a goal (starting with the highest priority goal) and
stitch together actions that achieve that effect. The final action
should achieve the desired effect, and prior actions should be
taken if needed to satisfy the preconditions of the final action.

In our testing, we observed that the enemies exhibited
expected behavior such as chasing the player, shooting the
player when they were in range and had line-of-sight, and
throwing grenades at the player. However, the behavior of
the agent was predictable. We believe that with the addition
of more actions and goals to the agent, we would see more
complex behavior. Luckily, this framework makes the addition
of new actions and goals fairly simple. You just need to
define the action’s preconditions and effects, and then add
the action’s IActionStrategy interface, which defines
what happens when the action starts and stops. However, the
initial implementation of GOAP was difficult, as it required
definitions of the AgentAction, AgentGoal, and AgentBelief
classes. Additionally, GoapPlanner had to be implemented
with an algorithm to determine the plan of action to take.
Overall, the initial development cost for this approach was
high, but further expansion is relatively low.

Fig. 5. Goal-Oriented Action Planning

D. Utility AI

Utility AI involves the agent assessing the usefulness (util-
ity) of all of its available actions by assessing the relevant
considerations for those actions. Considerations are defined
by the designer, typically mapping some gameplay metric to
a utility score based on a hand-made curve asset. Actions can
have multiple considerations, and then the final utility score of
the action is computed by aggregating the scores of each of its
considerations in some way (most commonly multiplicatively).
Every update, the AI Brain computes the utility scores of all
available actions and chooses to perform the best possible
(most useful) action amongst its options, as shown in the above
figure.

Utility AI is a relatively simple design pattern to implement,
as the complexity primarily arises from the process of defining
and tuning the different considerations for the agent to assess.
Since this approach lacks any explicitly defined transitions like
FSMs and BTs and every consideration is updated continu-
ously, a Utility AI agent has a more complete picture of its
situation and can thus make more informed decisions. This
also has the added benefit of leading to emergent behavior,
as, again, there are no hard-coded sequences the agent must
follow to change its current behavior. An example of emergent
behavior we saw in our implementation was that the agents
realized that they were safer throwing a grenade from behind
cover rather than shooting at the player out in the open, and
so they tended to do that more often.

The main notable drawback of this approach is that tuning
the considerations and weighting them appropriately, such that
the agents behave intelligently, can be time-consuming. That
said, we would argue that this is more of an issue for gameplay
designers than the actual programmers, and being so highly
configurable could be seen as another benefit of this approach.
The only other main drawback is that debugging strange
behavior can be somewhat difficult, due to the aforementioned
presence of emergent behavior, though this is hardly specific
to our implementation.

Fig. 6. Utility AI

VII. LIMITATIONS

A. Internal Validity

Feldt and Magazinius [1] find that software engineering
research commonly has threats to validity. One such type
of threat is an internal threat to validity. These threats are



part of the study methodology and raise concerns about
whether the study’s conclusions are valid. An internal threat
to validity in our study is that the implementation tasks were
distributed to group members with varying levels of experience
in game development. These differences in expertise may
have influenced individuals’ perceptions of the difficulty of
implementation. To address this potential bias, we conducted
peer reviews of each other’s work and decided on the difficulty
of each implementation.

B. External Validity

Feldt and Magazinius [1] also discuss external threats to
validity. These threats are concerned with whether a study’s
results can be generalized to other situations. In our project, the
development was conducted only in the Unity game engine.
Therefore, the implementation difficulty and results may differ
in other game engines, which may affect the generalization of
the results of this study. We were not able to mitigate this
threat since it would require implementing the four strategies
in multiple game engines, which is beyond the time we have
available to complete the project.

C. Construct Validity

Sjøberg and Bergersen [5] discuss construct threats to valid-
ity, in which unclear or vague definitions of concepts or mea-
sures are used in a study. Our evaluation of the implementation
is limited to qualitative analysis. Quantitative evaluation would
require extensive playtesting and data collection involving a
large survey of numerous playtesters, that are beyond the scope
of this study.

VIII. FUTURE WORK

Future research could explore different gameplay scenarios
to provide a more comprehensive evaluation of the strengths
and weaknesses of each AI approach. Additionally, comparing
traditional behavior architectures to machine learning agents.
Finally, exploring hybrid approaches, particularly those that
incorporate principles of utility AI, can uncover opportunities
to enhance the flexibility, responsiveness, and scalability of
existing behavioral models.

IX. CONCLUSION

Choosing the right approach for modeling NPC behavior
largely depends on the type of game and the design goals.
Importantly, increased implementation complexity does not al-
ways lead to significantly improved or more realistic behavior.
Each AI paradigm offers unique advantages and is best suited
for certain situations.

• Finite State Machines (FSMs): Best when the action
space is relatively small and transitions are easy to
manage.

• Behavior Trees (BTs): Preferred when complex or nu-
merous transitions make FSMs unwieldy, and allow for
more explicit decision logic.

• Goal-Oriented Action Planning (GOAPs): Best for sce-
narios that require complex but predictable behavior,
especially when the action space is large.

• Utility AI: Ideal for games that require unpredictable,
emergent behavior and delicate decision making in a large
action space.

REFERENCES

[1] Robert Feldt and Ana Magazinius. Validity Threats in Empirical Software
Engineering Research - An Initial Survey. pages 374–379, 01 2010.

[2] Jeff Orkin. Three states and a plan: the AI of FEAR. In Game developers
conference, volume 2006, page 4. Citeseer, 2006.

[3] Glen Robertson and Ian Watson. Building behavior trees from observa-
tions in real-time strategy games. In 2015 International symposium on
innovations in intelligent systems and applications (INISTA), pages 1–7.
IEEE, 2015.

[4] Simardeep Saini, Paul Wai Hing Chung, and Christian W Dawson.
Mimicking human strategies in fighting games using a data driven
finite state machine. In 2011 6th IEEE Joint International Information
Technology and Artificial Intelligence Conference, volume 2, pages 389–
393. IEEE, 2011.

[5] Dag I.K. Sjøberg and Gunnar R. Bergersen. Improving the Reporting of
Threats to Construct Validity. In Proceedings of the 27th International
Conference on Evaluation and Assessment in Software Engineering,
EASE ’23, page 205–209, New York, NY, USA, 2023. Association for
Computing Machinery.

[6] Maciej Świechowski. Fuzzy Utility AI for Handling Uncertainty in Video
Game Bots Implementation. In 2024 IEEE Congress on Evolutionary
Computation (CEC), pages 1–8. IEEE, 2024.


